# First Principles Study of Structural Stability and Electronic Structure of 4d Transition Metal Carbides TMC<sub>2</sub> (TM= Ru, Rh, Pd)

M. Manikandan<sup>1</sup>, M. Santhosh<sup>1</sup>, A. Amudhavalli<sup>1</sup>, R. Rajeswarapalanichamy<sup>1,\*</sup>, K. Iyakutti<sup>2</sup>

<sup>1</sup> Department of Physics, N.M.S.S.V.N College, Madurai, Tamilnadu-625019, India <sup>2</sup> Department of Physics and Nanotechnology, SRM University, Chennai, Tamilnadu-603203. India.

**Abstract:** Structural stability of 4d – transition metal dicarbides (TMC<sub>2</sub>) is analysed among the different phases, tetragonal (P4/mbm), fluorite (Fm3m), orthorhombic (Pnnm), pyrite (Pa-3), and hexagonal (P6/mmm) using first principles calculations. The most stable structure for these carbides is found to be hexagonal structure. The calculated formation enthalpy values show that these carbides can be easily synthesized at normal pressure. A structural phase transition is predicted under high pressure in these carbides. The electronic structure reveals that these carbides are metallic under ambient condition. The elastic constant calculations indicate that all these carbides are mechanically stable and ultra incompressible characterized by large bulk moduli.

Keywords: Electronic structure; First principles study; mechanical property; Phase transition.

#### I. Introduction

Designing ultrahard materials is of always great scientific interest due to its variety of industrial applications from cutting and polishing tools to wear-resistant coatings. Diamond remains the hardest known material, despite years of synthetic and theoretical efforts to improve upon it. However, even diamond has limitations. It is not effective for cutting ferrous metals, including steel, because of a chemical reaction that produces iron carbide. The introduction of light and covalent-bond- forming elements into the transition metal (TM) lattices is expected to have profound influences on their structural, mechanical, and electronic properties [1–3]. The experimental and theoretical investigations on  $TMC_2$  are very limited. This motivated to study the structural stability, mechanical property and electronic structure for these exciting compounds. In the present paper the structural, electronic and mechanical properties of  $TMC_2$  (TM = Ru, R, Pd) in tetragonal (P4/mbm), fluorite (Fm3m), orthorhombic (Pnnm), pyrite (Pa-3) and hexagonal (P6/mmm) is analyzed using first principles calculations under normal pressure.

## **II.** Theoretical Framework

The total energy calculations are performed in the frame work of density functional theory using the generalized gradient approximation (GGA) as implemented in the VASP code [4]. Ground-state geometries are determined by minimizing stresses and Hellman-Feynman forces using the conjugate-gradient algorithm with force convergence less than  $10^{-3}$  eV/Å. Brillouin zone integration is performed with a Gaussian broadening of 0.1 eV during all relaxations. The cutoff energy for plane waves in our calculation is 500 eV. The valence electron configurations are  $4d^7$  5s<sup>1</sup> for Ru,  $4d^8$  5s<sup>1</sup> for Rh,  $4d^{10}$  for Pd and C 2s<sup>2</sup> 2p<sup>2</sup> atoms. Brillouin-zone integrations are performed on the Monkhorst-Pack K-point mesh with a grid size of 12x12x12 for structural optimization and total energy calculation.

#### **Structural properties**

### **III. Results And Discussions**

The total energy of RuC<sub>2</sub>, RhC<sub>2</sub> and PdC<sub>2</sub> is calculated for various phases considered as a function of reduced volume and their plots are given in Fig. 1. It is observed that hexagonal phase is the lowest energy phase for these carbides. When the volume is reduced, a structural phase transition occurs from hexagonal to pyrite in RuC<sub>2</sub>, hexagonal to orthorhombic in RhC<sub>2</sub> and PdC<sub>2</sub>. On further reducing the volume, RuC<sub>2</sub> undergoes a phase transition from pyrite to orthorhombic phase. To determine the transition pressure, the enthalpy values are plotted against pressure in Fig. 2. The transition from hexagonal to pyrite phase is predicted at a pressure of 11 GPa in RuC<sub>2</sub>. On further increasing the pressure to 24 GPa, pyrite to orthorhombic phase transition is

*National Conference on Current Advancements in Physics* 3<sup>rd</sup> &4<sup>th</sup> February 2017 38 | Page Department of Physics, St. John's College, Palayamkottai-627 002, Tamilnadu, India. DOI 10.9790/4861-17002023841

predicted. Similarly in  $RhC_2$  and  $PdC_2$ , pressure induced phase transition from hexagonal to orthorhombic phase is predicted at 392 GPa and 88 GPa respectively.

The calculated ground state properties like lattice constants a, b and c (Å), cell volume  $V_0$  (Å<sup>3</sup>), cohesive energy  $E_{coh}$  (eV), valence electron density  $\rho$  (electrons/Å<sup>3</sup>) and formation enthalpy  $\Delta H$  (eV) are listed in Table 1.

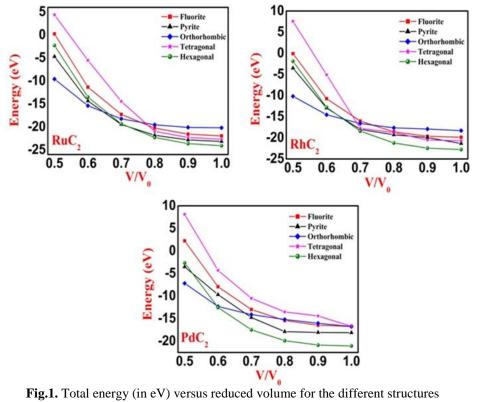
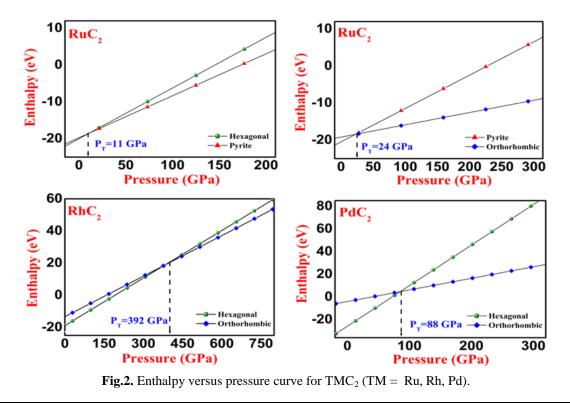
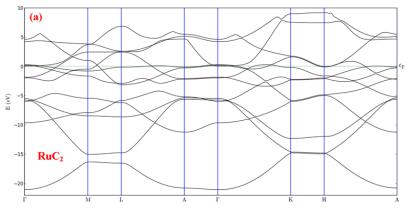
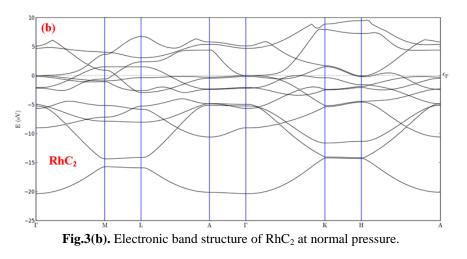




Fig.1. Total energy (in eV) versus reduced volume for the different structures of  $TMC_2$  (TM = Ru, Rh, Pd).

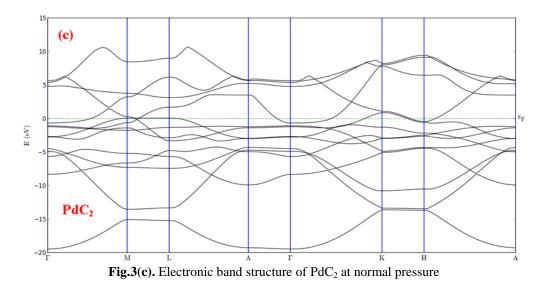



National Conference on Current Advancements in Physics 3<sup>rd</sup> &4<sup>th</sup> February 2017 39 | Page Department of Physics, St. John's College, Palayamkottai-627 002, Tamilnadu, India. DOI 10.9790/4861-17002023841

| •••         |                                                                                                                                                  |                                                                                                                                                                                |                                                                                                                                                                                             |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Space group | а                                                                                                                                                | b                                                                                                                                                                              | с                                                                                                                                                                                           | V <sub>0</sub>                                                                                                                                                                                                                                          | E <sub>Coh</sub>                                                                                                                                                                                                                                                                                                                   | ρ                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Delta H$                                             |
| Fm3m        | 4.925                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                                             | 29.86                                                                                                                                                                                                                                                   | 17.66                                                                                                                                                                                                                                                                                                                              | 0.5358                                                                                                                                                                                                                                                                                                                                                                                                                                   | -17.66                                                 |
| Pa-3        | 3.099                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                                             | 26.78                                                                                                                                                                                                                                                   | 18.88                                                                                                                                                                                                                                                                                                                              | 0.5975                                                                                                                                                                                                                                                                                                                                                                                                                                   | -18.88                                                 |
| Pnnm        | 3.772                                                                                                                                            | 4.315                                                                                                                                                                          | 2.099                                                                                                                                                                                       | 34.17                                                                                                                                                                                                                                                   | 15.91                                                                                                                                                                                                                                                                                                                              | 0.4682                                                                                                                                                                                                                                                                                                                                                                                                                                   | -15.91                                                 |
| P4/mbm      | 3.776                                                                                                                                            |                                                                                                                                                                                | 2.535                                                                                                                                                                                       | 33.07                                                                                                                                                                                                                                                   | 18.41                                                                                                                                                                                                                                                                                                                              | 0.4833                                                                                                                                                                                                                                                                                                                                                                                                                                   | -18.41                                                 |
| P6/mmm      | 2.621                                                                                                                                            |                                                                                                                                                                                | 4.291                                                                                                                                                                                       | 25.53                                                                                                                                                                                                                                                   | 19.75                                                                                                                                                                                                                                                                                                                              | 0.6267                                                                                                                                                                                                                                                                                                                                                                                                                                   | -19.75                                                 |
| Fm3m        | 4.977                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                                             | 30.82                                                                                                                                                                                                                                                   | 11.82                                                                                                                                                                                                                                                                                                                              | 0.5516                                                                                                                                                                                                                                                                                                                                                                                                                                   | -11.82                                                 |
| Pa-3        | 3.115                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                                             | 30.2333                                                                                                                                                                                                                                                 | 13.29                                                                                                                                                                                                                                                                                                                              | 0.5623                                                                                                                                                                                                                                                                                                                                                                                                                                   | -13.29                                                 |
| Pnnm        | 3.913                                                                                                                                            | 4.476                                                                                                                                                                          | 2.177                                                                                                                                                                                       | 8.14                                                                                                                                                                                                                                                    | 10.25                                                                                                                                                                                                                                                                                                                              | 0.4457                                                                                                                                                                                                                                                                                                                                                                                                                                   | -10.25                                                 |
| P4/mbm      | 3.869                                                                                                                                            |                                                                                                                                                                                | 2.598                                                                                                                                                                                       | 35.58                                                                                                                                                                                                                                                   | 12.64                                                                                                                                                                                                                                                                                                                              | 0.4778                                                                                                                                                                                                                                                                                                                                                                                                                                   | -12.64                                                 |
| P6/mmm      | 2.635                                                                                                                                            |                                                                                                                                                                                | 4.313                                                                                                                                                                                       | 25.94                                                                                                                                                                                                                                                   | 14.72                                                                                                                                                                                                                                                                                                                              | 0.6554                                                                                                                                                                                                                                                                                                                                                                                                                                   | -14.72                                                 |
| Fm3m        | 5.019                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                                             | 31.61                                                                                                                                                                                                                                                   | 10.87                                                                                                                                                                                                                                                                                                                              | 0.5694                                                                                                                                                                                                                                                                                                                                                                                                                                   | -10.87                                                 |
| Pa-3        | 3.184                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                                             | 32.28                                                                                                                                                                                                                                                   | 12.26                                                                                                                                                                                                                                                                                                                              | 0.5576                                                                                                                                                                                                                                                                                                                                                                                                                                   | -12.26                                                 |
| Pnnm        | 4.003                                                                                                                                            | 4.579                                                                                                                                                                          | 2.228                                                                                                                                                                                       | 40.84                                                                                                                                                                                                                                                   | 10.89                                                                                                                                                                                                                                                                                                                              | 0.4407                                                                                                                                                                                                                                                                                                                                                                                                                                   | -10.89                                                 |
| P4/mbm      | 3.881                                                                                                                                            |                                                                                                                                                                                | 2.606                                                                                                                                                                                       | 35.91                                                                                                                                                                                                                                                   | 10.86                                                                                                                                                                                                                                                                                                                              | 0.5012                                                                                                                                                                                                                                                                                                                                                                                                                                   | -10.86                                                 |
| P6/mmm      | 2.683                                                                                                                                            |                                                                                                                                                                                | 4.392                                                                                                                                                                                       | 27.38                                                                                                                                                                                                                                                   | 15.19                                                                                                                                                                                                                                                                                                                              | 0.6574                                                                                                                                                                                                                                                                                                                                                                                                                                   | -15.19                                                 |
|             | Fm3m<br>Pa-3<br>Pnnm<br>P4/mbm<br>P6/mmm<br>Pa-3<br>Pnnm<br>P4/mbm<br>P6/mmm<br>Fm3m<br>Pa-3<br>Pnnm<br>Pa-3<br>Pnnm<br>Pa-3<br>Pnnm<br>Pa-4/mbm | Fm3m 4.925   Pa-3 3.099   Pnnm 3.772   P4/mbm 3.776   P6/mmm 2.621   Fm3m 4.977   Pa-3 3.115   Pnnm 3.913   P4/mbm 2.635   Fm3m 5.019   Pa-3 3.184   Pnnm 4.003   P4/mbm 3.881 | Fm3m 4.925   Pa-3 3.099   Pnnm 3.772   P4/mbm 3.776   P6/mmm 2.621   Fm3m 4.977   Pa-3 3.115   Pnnm 3.913   P4/mbm 3.869   P6/mmm 2.635   Fm3m 5.019   Pa-3 3.184   Pnnm 4.003   Pa-3 3.881 | Fm3m 4.925   Pa-3 3.099   Pnnm 3.772   4.315 2.099   P4/mbm 3.776   P6/mmm 2.621   Fm3m 4.977   Pa-3 3.115   Pnnm 3.913   4.476 2.177   P4/mbm 3.869   2.598   P6/mmm 2.635   4.313   Fm3m 5.019   Pa-3 3.184   Pnnm 4.003   4.579 2.228   P4/mbm 3.881 | Fm3m 4.925 29.86   Pa-3 3.099 26.78   Pnnm 3.772 4.315 2.099 34.17   P4/mbm 3.776 2.535 33.07   P6/mmm 2.621 4.291 25.53   Fm3m 4.977 30.82   Pa-3 3.115 30.2333   Pnnm 3.913 4.476 2.177   P4/mbm 3.869 2.598 35.58   P6/mmm 2.635 4.313 25.94   Fm3m 5.019 31.61 32.28   Pnnm 4.003 4.579 2.228 40.84   P4/mbm 3.881 2.606 35.91 | Fm3m 4.925 29.86 17.66   Pa-3 3.099 26.78 18.88   Pnnm 3.772 4.315 2.099 34.17 15.91   P4/mbm 3.776 2.535 33.07 18.41   P6/mmm 2.621 4.291 25.53 19.75   Fm3m 4.977 30.82 11.82   Pa-3 3.115 30.2333 13.29   Pnnm 3.913 4.476 2.177 8.14 10.25   P4/mbm 3.869 2.598 35.58 12.64   P6/mmm 2.635 4.313 25.94 14.72   Fm3m 5.019 31.61 10.87   Pa-3 3.184 32.28 12.26   Pnnm 4.003 4.579 2.228 40.84 10.89   P4/mbm 3.881 2.606 35.91 10.86 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |


**Table 1:** Calculated lattice parameters a, b, c (Å), equilibrium volume  $V_0$  (Å<sup>3</sup>), cohesive energy  $E_{coh}$  (eV), valence electron density  $\rho$  (electrons/Å<sup>3</sup>) and formation enthalpy  $\Delta H$  (eV) for TMC<sub>2</sub> (TM = Ru, Rh, Pd).

#### **Electronic properties**


The band structure of  $RuC_2$ ,  $RhC_2$  and  $PdC_2$  are shown in Fig. 3(a-c). It is observed that, all the three carbides in the hexagonal structure are observed to be metallic as there is a crossing of bands at the Fermi level. The energy bands crossing the Fermi level are mainly due to the mixture of metal 4d (TM=Ru, Rh, Pd) and C 2p states. The band appears at the bottom of the valence band is due to the 2s state electrons of carbon atom. The other bands found just below the Fermi level are due to metal 4d (TM=Ru, Rh, Pd), metal 5s (TM=Ru, Rh, Pd) (TM=Ru, Rh, Pd) and C 2p states. The empty conduction bands above the Fermi level are due to metal 4d (TM=Ru, Rh, Pd), metal p (TM=Ru, Rh, Pd) and C 3d states.



**Fig.2(a).** Electronic band structure of  $RuC_2$  at normal pressure.



National Conference on Current Advancements in Physics 3<sup>rd</sup> &4<sup>th</sup> February 2017 40 | Page Department of Physics, St. John's College, Palayamkottai-627 002, Tamilnadu, India. DOI 10.9790/4861-17002023841



**Table 1:** Calculated elastic constants  $C_{11}$ ,  $C_{33}$ ,  $C_{44}$ ,  $C_{12}$ ,  $C_{13}$  (GPa), bulk modulus  $B_0$  (GPa), shear modulus G (GPa), Young's modulus (GPa), B/G ratio, Poisson's ratio v and microhardness parameter H for TMC2 (TM = Ru, Rh, Pd).

|                  | C <sub>11</sub> | C <sub>33</sub> | C <sub>44</sub> | C <sub>12</sub> | C <sub>13</sub> | $B_0$ | G   | Е   | B/G  | ν      | Н     |
|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------|-----|-----|------|--------|-------|
| RuC <sub>2</sub> | 510             | 688             | 120             | 163             | 62              | 253   | 223 | 517 | 1.13 | 0.2421 | 36.81 |
| RhC <sub>2</sub> | 492             | 656             | 113             | 144             | 66              | 243   | 214 | 496 | 1.13 | 0.2264 | 35.75 |
| PdC <sub>2</sub> | 480             | 503             | 106             | 137             | 51              | 215   | 192 | 444 | 1.11 | 0.2220 | 33.79 |

## **Elastic properties**

The elastic constants are determined using total energy method [5]. It is noted that, the elasticity tensor has five independent components ( $C_{11}$ ,  $C_{33}$ ,  $C_{44}$ ,  $C_{12}$  and  $C_{13}$ ) for hexagonal crystal. The calculated mechanical properties TMC<sub>2</sub> (TM = Ru, Rh, Pd) for stable hexagonal structure are given in Table 2. The computed young's modulus values indicate that RuC<sub>2</sub> is stiffer among these carbides. The Poisson's ratio measures the degree of directionality of the covalent bonds. The Poisson's ratio of PdC<sub>2</sub> is the lowest, indicating that the Pd - C bonding is more directional in nature. The calculated hardness values predict that RuC<sub>2</sub> is a hard material.

## **IV. Conclusion**

The structural stability, electronic and mechanical properties of 4d transition metal carbides  $TMC_2$  (TM = Ru, Rh, Pd) are investigated. It is found that all these carbides are most stable in hexagonal structure. A pressure induced structural phase transition is observed in all these carbides. The transition from hexagonal to pyrite structure is predicted at a pressure of 11 GPa. On further increasing the pressure to 24 GPa pyrite to orthorhombic transition is predicted. Similarly hexagonal to orthorhombic phase transition is predicted at a pressure of 392 GPa in RhC<sub>2</sub> and 88 GPa in PdC<sub>2</sub>. The band structure of 4d transition metal carbides TMC<sub>2</sub> (TM = Ru, Rh, Pd) confirm that they are metals. The computed elastic constants obey the necessary mechanical stability condition suggesting that all the materials are mechanically stable.

## Acknowledgements

The support received from the college management is greatly acknowledged

## References

- [1]. H. Holleck, Material selection for hard coatings, Journal of Vacuum Science & Technology A 4, 2661 (1986).
- [2]. Richard B.Kaner, John J. Gilman, Sarah H.Tolbert, Designing superhard materials, Science 308, 1268 (2005).
- [3]. Hsiu-Ying Chung, Michelle B. Weinberger, Jonathan B. Levine, Abby Kavner, Jenn-Ming Yang, Sarah H. Tolbert, Richard B. Kaner, Science 316, 436 (2007).
- [4]. G. Kresse , J. Hafner , Phys. Rev. B, 47, 558 (1993).
- [5]. M. Born, K. Huang, Dynamical Theory Of Crystal Lattices (Clarendon, Oxford, 1956).